

 Navigation

 	
 index

 	
 next |

 	Bento 0.2.0-git37de23d784 documentation

Bento documentation contents

	Overview
	Simple example

	Installing bento
	setuptools-based installation (deprecated)

	bento-based installer

	Tutorial
	Packaging a python module

	Adding packages

	Adding data files

	Adding extensions

	Adding compiled libraries

	Adding executables

	Guides
	Specifiying data files

	Retrieving data files at runtime

	Recursive package description

	Reference
	bento.info format reference

	Bentomaker, the command line interface to bento

	Single-file distribution
	How does this work ?

	Transition from existing python packaging infrastructure
	Converting distutils-based packages

	Adding bento-based setup.py for compatibility with pip, etc...

	How to contribute

	Design notes
	Commands “protocol”

	Build manifest and building installers

	FAQ
	Why to create a new tool ?

	What are the goals of bento ?

	Why not extending existing tools (distutils, etc...) ?

	What about distutils2 ?

	Isn’t it too difficult to support building extensions on every platform ?

	What about existing projects using distutils ?

	Is bento based on existing tools ?

	Who are the authors of bento ?

	What are the main features of bento compared to its competitors

	Does bento support virtualenv ?

	Why shouldn’t I use bento ?

	Is bento API stable ?

	TODO
	Syntax and features of the package description file

	Install-Reinstall-Rebuild-Clean problem

	Scipi

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

Overview

Bento aims at simplifying the packaging of python softwares, both from the user
and developer point of view. Bento packages are described by a bento.info file,
which is parsed by the different build tools to do the actual work. Currently,
the main user interface to bento is bentomaker, a command line tool to build,
install and query bento packages.

There are currently two ways to create bento packages : by writing a bento.info
file from scratch, or by converting an existing setup.py.

Simple example

Those examples assume you have already a usable bentomaker in your PATH, either
through bento installation or by using the one-file bentomaker bundle. If you
can execute:

bentomaker help

successfully, you should be able to go on.

From scratch

Bento packages are created from a bento.info file, which describes
metadata as well as package content in a mostly declarative manner.

For a simple python package hello consisting of two files:

hello/__init__.py
hello/hello.py

a simple bento.info may be written as follows:

Name: hello
Version: 1.0

Library:
 Packages:
 hello

The file contains some metadata, like package name and version. Its syntax is
indentation-based, like python, except that only spaces are allowed (tab
character will cause an error when used at the beginning of a line).

Building and installing

You use bentomaker to build and install bento packages. Its interface is
similar to autotools:

bentomaker configure --prefix=somedirectory
bentomaker install

If you are fine with default configuration values, you can install in one step:

bentomaker install

bentomaker will automatically determine which commands need to be re-run. You
can check where bento install files with the –list-files option (in which case
bento does not install anything):

bentomaker install --list-files

Bentomaker contains a basic help facility, which list existing commands,
etc...:

bentomaker help commands # list commands

From existing setup.py (convertion from distutils-based projects)

Bentomaker has an experimental convert command to convert an existing setup.py:

bentomaker convert

If successfull, it will write a bento.info file whose content is derived from
your setup.py. The convert command is inherently fragile, because it has to
hook into distutils/setuptools internals. Nevertheless, it has been used
succesfully to convert packages such as Sphinx or Jinja.

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

Installing bento

setuptools-based installation (deprecated)

Bento has a setup.py file, and can be installed as any other
conventional python software:

python setup.py install --user # for python >= 2.6
python setup.py install # otherwise

bento-based installer

Bento is now able to install itself. First, you need to create the bentomaker script:

python bootstrap.py

This will create a script (or an exe on windows) which can be used to
install bento. Once created, bento is installed as a regular
bento package:

./bentomaker configure
./bentomaker build
./bentomaker install
Or an egg
./bentomaker build_egg
Or a windows installer
./bentomaker build_wininst

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

Tutorial

This tutorial will guide you through the basics to package your python
code with bento. Note that for an existing project using
setup.py-based packaging, you should look at the convert command so
that you don’t have to start from scratch.

Packaging a python module

First, let’s assume you have a simple software fubar consisting of a
single python module hello.py:

hello.py

A simple bento.info file would look as follows:

Name: fubar
Author: John Doe
Summary: a simple module

Library:
 Modules: hello

The indentation must be done through spaces (tabs are considered
syntax errors). The bento.info is located just next to your hello.py:

hello.py
bento.info

That’s it, you have your first bento package !

Bentomaker

Currently, the only way to interact with bento is bentomaker, a
command-line interface to bento. It is used to build, install and test
packages from the command line:

bentomaker install

This will automatically run the configure and build commands for you. You can
run them explicitely if you to customized installation, e.g.:

bentomaker configure --prefix=/blabla
bentomaker install

You can also build eggs, source tarballs and windows installers
(windows only for now):

bentomaker sdist
bentomaker build_egg
bentomaker build_wininst

You can access the list of available commands with the help command:

bentomaker help commands

Adding packages

Adding a package (a directory with a __init__.py file) is simple as
well. Assuming the following source tree:

hello.py
foo/__init__.py
foo/bar.py

You simply write:

Library:
 Packages: foo

Multiple packages are specified through a comma separated list, and respect
indentation:

Library:
 Packages: foo, bar

or:

Library:
 Packages:
 foo, bar

or:

Library:
 Packages:
 foo,
 bar

Adding data files

Besides packages and modules, you may want to add extra files, like
configuration, manpages, documentation, etc... Those are called data
files. Bento has a simple but powerful way to install arbitrary data
in arbitrary locations.

Installed vs non-installed files

Bento makes the distinction between the two following categories:

	installed files (data files): those files are part of the
installed package

	extra source files: those files are not installed, but part of
the source distribution. They may be README, or additional files
necessary to build the software.

An extra source file will only be included in the source tarballs,
whereas data files are installed and needed to use the software.

Installed data files: DataFiles section

Say our fubar software has one manpage fubar.1:

fubar.1

We need to add the following to bento.info:

DataFiles: manpage
 TargetDir: $mandir
 Files: fubar.1

This will install the file fubar.1 into $mandir (as $mandir/fubar.1). $mandir
is expanded by bento to a sensible default on every support platform, and can
be customized at configuration time through the –mandir option. You can of
course hardcode the install directory, e.g.:

DataFiles: manpage
 TargetDir: /usr/share/man/man1
 Files: fubar.1

but this is generally not recommended as it is not portable and makes native
packaging more difficult. Bento has a simple mechanism so that you can add your
own paths.

Extra source files

Extra source files are added through the ExtraSourceFiles section:

ExtraSourceFiles:
 setup.py
 test/*.py

Adding extensions

Extension (compiled python modules) are supported as well. If you have
an extension _hello built from the file hellomodule.c, you just
write:

Library:
 Extension: _hello
 Sources: hellomodule.c

Adding compiled libraries

Similarly, if you have a compiled library (a C library which is not
importable from python):

Library:
 CompiledLibrary: foo
 Sources: foo.c

Note that there is only one Library section, i.e. a package with both
extensions and compiled libraries would look like:

Library:
 Extension: _hello
 Sources: hellomodule.c
 CompiledLibrary: foo
 Sources: foo.c

and not like:

Library:
 Extension: _hello
 Sources: hellomodule.c
Library:
 CompiledLibrary: foo
 Sources: foo.c

Note that it is currently not possible to link an extension against such a
compiled library purely from the bento.info file: you need to use the hook
mechanism.

Adding executables

Many python softwares are libraries, and their only use is from a
python interpreter. Nevertheless, it is relatively common to provide a
full program, be it GUI or command line tool. Bento uses a feature
similar to setuptools to help you create “entry points” which work on
both unix and windows systems:

Executable: foomaker
 Module: foomakerlib.foomaker
 Function: main

This tells bento to create a script called foomaker (foomaker.exe on
windows), which calls the main function from the foomakerlib.foomaker
python module. Those scripts are automatically installed in $bindir
(which translates to /usr/local/bin by default on unix, and C:Python*Scripts
on windows, both values which may be changed by the user at the configure stage
through the –bindir option).

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

Guides

Specifiying data files

Most packages have some files besides pure code: configuration, data
files, documentation, etc... When those files need to be installed,
you should use DataFiles sections. Each such section has two mandatory
fields, to specify the target directory (where files are installed)
and which files are specific to this section:

DataFiles: manage
 TargetDir: /usr/man/man1
 Files: fubar/fubar1

This will install the file top_dir/fubar/fubar1 into
/usr/man/man1/fubar/fubar1.

Flexible install scheme

Hardcoding the target directory as above is not flexibe. The user may
want to install manpages somewhere else. Bento defines a set of
variable paths which are customizable from bentomaker, with platform-specific
defaults. For manpages, the variable is mandir:

DataFiles: manpage
 TargetDir: $mandir/man1
 Files: fubar/fubar.1

Now, the installation path is customizable, e.g.:

bentomaker configure --mandir=/opt/man

will cause the target directory to translate to /opt/man/man1.
Moreover, as mandir default value is defined relatively to $prefix ($prefix/man
on unix), modifying the prefix will also change how mandir is expanded at
install time:

$mandir is automatically expanded to /opt/man
bentomaker configure --prefix=/opt

If you do not want to install files with their directory component,
you need to use the SourceDir option:

DataFiles: manpage
 TargetDir: $mandir
 SourceDir: fubar
 Files: fubar.1

will install fubar/fubar.1 as $mandir/fubar.1 instead of
$mandir/fubar/fubar.1.

Custom data paths

While the default list should cover most package needs, it is sometimes useful
to define custom path variable:

Path: foo
 Description: foo directory
 Default: $datadir/foo

Bentomaker will automatically add the –foodir option, and $foo will be
expanded to the customized value (or $datadir/foo by default). The description
will be used as a description in the help message.

Conditional customization

It is sometimes necessary to define platform-specific default for custom paths.
This can be done as follows:

Path: foo
 Description: foo directory
 if os(darwin):
 Default: /Library/foo
 else:
 Default: $bin/foo

FIXME: refer to conditional

Retrieving data files at runtime

It is often necessary to retrieve data files from your python code. For
example, you may have a configuration file which needs to be read at startup.
The simplest way to do so is to use __file__ and refer to data files relatively
to python code location. This is not very flexible, because it requires dealing
with platform idiosyncraties w.r.t. file location. Setuptools and its
descendents have an alternative mechanism to retrieve resources at runtime,
implemented in the pkg_resource module.

Bento uses a much simpler system, based on a simple python module generated at
install time, containing all the relevant information. This file is not
generated by default, and you need to define which file will contain all those
variables with the ConfigPy field:

ConfigPy: foo/__bento_config.py

This tells bento to generate a module, and install it into
foo/__bento_config.py. The path is always relative to site-packages (e.g.
/usr/local/lib/python2.6/site-packages/foo/__bento_config.py by default on
unix). The file looks as follows:

DOCDIR = "/usr/local/share/doc/config_py"
SHAREDSTATEDIR = "/usr/local/com"
...

to that you can import every path variable with its expanded value in your
package:

from foo.__bento_config import DOCDIR, SHAREDSTATEDIR

As the generated python module is a simple python file with pair values, it is
easy to modify it if desired (for debugging, etc...), and understandable by any
python programmer.

If you need to support the case where the package has not been built yet, you
can do as follows:

try:
 from foo.__bento_config import DOCDIR, SHAREDSTATEDIR
except ImportError:
 # Default values (so that the package may be imported/used without
 # being built)
 DOCDIR = ...

This is not done by default as it is not possible to know the right default
value.

Example

Assuming the following bento file:

...

DataFiles: test_data
 SourceDir: data
 TargetDir: $pkgdatadir
 Files:
 foo.dat

ConfigPy: foo/__bento_config.py

you can access “foo.dat” as follows in your package:

try:
 from foo.__bento_config import PKGDATADIR
except ImportError:
 PKGDATADIR = "data" # default value

data = os.path.join(PKGDATADIR, "foo.dat")

This will point to the right location independently on $pkgdatadir value.

Recursive package description

If you have a package with a lot of python subpackages which require
custom configurations, doing everything in one bento.info file is
restrictive. Bento has a simple recursive feature so that one
bento.info can refer to another bento.info:

...
Recurse: foo, bar

The Recurse field indicates to bento that it should look for bento.info in both
foo/ and bar/ directories. At this time, those bento.info files support a
strict subset of the top bento.info. For example, no metadata may be defined in
sub-bento.info.

Simple example

Let’s assume that you have a software with the packages foo, foo.bar
and foo.foo. The simplest way to define this software would be:

...
Library:
 Packages: foo, foo.bar, foo.fubar

Alternatively, an equivalent description, using the recursive feature:

...
Recurse: foo

Library:
 Package: foo

and the foo/bento.info:

...
Library:
 Packages: bar, fubar

The packages are defined relatively to the directory where the subento file is
located. Obviously, in this case, it is overkill, but for complex, deeply
nested packages (like scipy or twisted), this makes the bento.info more
readable. It is especially useful when you use this with the hook file
mechanism, where each subento file can drive a part of the configure/build
through command hooks and overrides. In that case, the hook file defined in a
subdirectory only sees the libraries, modules, etc... defined in the
corresponding bento.info by default (see hook section).

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

Reference

	bento.info format reference
	Introduction

	Package metadata
	Name

	Version

	Summary

	Url

	Author

	Author email

	Maintainer

	Maintainer email

	License

	Description

	Platforms

	Classifiers

	User-customizable flags

	Library section

	Executable section
	Pure python packages

	Packages containing C extensions

	Packages with data files
	Extra source files

	Installed data files
	Srcdir field

	Named data files section

	Available path variables

	Conditionals

	Adding custom options
	Path option

	Flag option

	Bentomaker, the command line interface to bento
	Introduction

	Available commands
	configure

	build

	install

	build_egg

	sdist

	convert

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

 	Reference

bento.info format reference

Introduction

The package description is a text file, by default named bento.info. Its syntax
is indentation-based. It does not support yet commenting, and is currently
limited to ASCII.

A typical .info file is structured as follows:

	The package metadata (name, version, etc...)

	Optionally, it may contain addition user-customizable options such as
path or flags, whose exact value may be set at configure time.

	A Library section, which defines the package content (packages, modules,
C extensions, etc...)

	Optionally, the .info file may contain one or several Executable
sections, to describe programs expected to be run from the command line
or from a GUI. This is where distutils scripts and setuptools console
scripts are defined.

Each section consists of field:value pairs:

	Both fields and values are case-sensitive.

	Indentation has to be in spaces, tab characters for indentation are not
supported. Besides this constraints, rules for indentation should follow
python’s own rule (arbitrary number of spaces for a given indentation
level).

Package metadata

Bento supports most metadata defined in the PEP 241 and 314. For a simple
package containing one module hello, the bento.info metadata definition would
look like:

Name: hello
Version: 0.0.1
Summary: A one-line description of the distribution
Description:
 A longer, potentially multi-line string.

 As long as the indentation is maintained, the field is considered as
 continued.
Author: John Doe
AuthorEmail: john@doe.org
License: BSD

Different fields have different values: they generally consist of either a word
(string sequence without a space), a line (a sequence of words without a
newline) or multiple lines (Description field only).

Note:: while most metadata defined in the PEP-241 and PEP-314 are supported
syntax-wise, their semantics are not always implemented already.

Note:: the bento lexer is ad-hoc and not well specified at this stage. It was
conceived to handle values in the reStructuredText format, but doing so
prevents desired flexibility of the bento.info format itself, or would be too
complex to support. Before 1.0, bento.info format may change so that fields in
reStructuredText need to be put in a separate file, e.g.:

DescriptionFromFile: README.rst

If you are reading this and actually know something about parsing and have a
better idea to support inline reST, I am open to suggestions !

Name

Format:

Name: ASCII_TOKEN

Name of the software being packaged. Its value should contain only
alpha-numeric characters.

Version

Format:

Version: VERSION_TOKEN

VERSION_TOKEN format is not enforced yet

Summary

Format:

Description: WORDS

One or more space separated words

Url

Author

Author email

Maintainer

Maintainer email

License

Description

Platforms

Classifiers

User-customizable flags

Library section

Executable section

Pure python packages

Assuming a package with the following layout:

hello/pkg1/__init__.py
hello/pkg1/...
hello/pkg2/__init__.py
hello/pkg2/...
hello/__init__.py

it would be declared as follows:

Name: hello
Version: 0.0.1

Library:
 Packages:
 hello.pkg1,
 hello.pkg2,
 hello

The following syntax is also allowed:

Library:
 Packages:
 hello.pkg1, hello.pkg2, hello

as well as:

Library:
 Packages: hello.pkg1, hello.pkg2, hello

Packages containing C extensions

For a simple extension hello._foo, built from sources src/foo.c and src/bar.c,
the declaration is as follows:

Library:
 Extension: hello._foo
 Sources:
 src/foo.c,
 src/bar.c

Note: none of the other distutils Extension arguments (macro definitions,
etc...) are supported yet.

Packages with data files

Adding data files in bento is easy. By data files, we mean any file other
than C extension sources and python files. There are two kinds of data files in bento:

	Installed data files: those are installed somewhere on the user system at
installation time (distutils package_data and data_files, numpy.distutils
add_data_files and add_data_dir).

	Extra source files: those are only necessary to build the package, and
are not installed. As such, they only need to be included in the source
tarball (distutils MANIFEST[.in] mechanism, automatic inclusion from the
VCS in setuptools, etc...)

Extra source files

Extra source files are simply declared in the section ExtraSourceFiles (outside
any Library section):

ExtraSourceFiles:
 AUTHORS,
 CHANGES,
 EXAMPLES,
 LICENSE,
 Makefile,
 README,
 TODO,
 babel.cfg

Those will be always be included in the tarball generated by bento sdist. A
limited form of globbing is allowed:

ExtraSourceFiles:
 doc/source/*.rst
 doc/source/chapter1/*.rst

that is globbing on every file with the same extension is allowed. Any other
form of globbing, in particular recursive ones are purposedly not supported to
avoid cluttering the tarball by accident.

Installed data files

It is often needed to install data files within the rest of the package.
Bento’s system is both simple and flexible enough so that any file in your
sources can be installed anywhere. The most simple syntax for data files is as
follows:

DataFiles:
 TargetDir: /etc
 Files:
 somefile.conf

This installs the file somefile.conf into /etc. Using hardcoded paths should be
avoided, though. Bento allows you to use “dynamic” path instead. This scheme
should be familiar to people who have used autotools:

DataFiles:
 TargetDir: $sysconfdir
 Files:
 somefile.conf

$sysconfigdir is a path variable: bento defines several path variables
(available on every platform), which may be customized at the configure stage.
For example, on Unix, $sysconfdir is defined as $prefix/etc, and prefix is
itself defined as /usr/local. If prefix is changed, sysconfdir will be changed
accordingly. Of course, sysconfdir itself may be customized as well. This
allows for very flexible installation layout, and every particular install
scheme (distutils –user, self-contained as in GoboLinux or Mac OS X) may be
implemented on top.

It is also possible to define your own path variables (see Path option
section).

Srcdir field

By default, the installed name is the concatenation of target and the values in
files, e.g.:

DataFiles:
 TargetDir: $includedir
 Files:
 foo/bar.h

will be installed as $includedir/foo/bar.h. If instead, you want to install
foo/bar.h as $includedir/bar.h, you need to use the srcdir field:

DataFiles:
 TargetDir: $includedir
 SourceDir: foo
 Files:
 bar.h

Named data files section

You can define as many DataFiles sections as you want, as long as you name
them, i.e.:

DataFiles: man1
 TargetDir: $mandir/man1
 SourceDir: doc/man
 Files:
 *.1

DataFiles: man3
 TargetDir: $mandir/man3
 SourceDir: doc/man
 Files:
 *.3

is ok, but:

DataFiles:
 TargetDir: $mandir/man1
 SourceDir: doc/man
 Files:
 *.1

DataFiles:
 TargetDir: $mandir/man3
 SourceDir: doc/man
 Files:
 *.3

is not.

Available path variables

By default, bento defines the following path variables:

	prefix: install architecture-independent files

	eprefix: install architecture-dependent files

	bindir: user executables

	sbindir: system admin executables

	libexecdir: program executables

	sysconfdir: read-only single-machine data

	sharedstatedir: modifiable architecture-independent data

	localstatedir: modifiable single-machine data

	libdir: object code libraries

	includedir: C header files

	oldincludedir: C header files for non-gcc

	datarootdir: read-only arch.-independent data root

	datadir: read-only architecture-independent data

	infodir: info documentation

	localedir: locale-dependent data

	mandir: man documentation

	docdir: documentation root

	htmldir: html documentation

	dvidir: dvi documentation

	pdfdir: pdf documentation

	psdir: ps documentation

While some of those path semantics don’t make sense on some platforms such as
windows, they are defined everywhere with defaults, to ensure a consistent
interface across platforms. They are also defined to to get a 1-to-1
correpondance with the autoconf conventions, which are familiar to most
packagers on open source OS and system administrators.

Conditionals

It is not always possible to have one same package description for every
platform. It may also be desirable to enable/disable some parts of a package
depending on some option. For this reason, the .info file supports a limited
form of conditional. For example:

Library:
 InstallRequires:
 docutils,
 sphinx
 if os(windows):
 pywin32

The following conditional forms are available:

	os(value): condition on the OS

	flag(value): user-defined flag, boolean

Adding custom options

Path option

A new path option may be added:

Path: octavedir
 Description: octave directory
 Default: $datadir/octave

Bentomaker automatically adds an –octavedir option (with help taken from the
description), and $octavedir may be used inside the .info file.

Flag option

A new flag option may be added:

Flag: debug
 Description: build debug
 Default: false

Bentomaker automatically adds an –octavedir option (with help taken from the
description), and $octavedir may be used inside the .info file.

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

 	Reference

Bentomaker, the command line interface to bento

Introduction

Bentomaker is a simple python package which uses bento API to configure, build
and install packages. A simple install with bentomaker looks like this:

bentomaker configure --prefix=/home/david/local
bentomaker build
bentomaker install

Or more simply:

bentomaker configure --prefix=/home/david/local
bentomaker install

bentomaker commands know which other command they depend on, and are
automatically run if necessary.

Bentomaker has a basic help facility:

bentomaker help

will list all available commands. Once the project is configured, every
installation path and user customization is set up, and cannot be changed
(except by reconfiguring the package, of course).

Available commands

configure

This command must be run before any build/install command. It is similar to
the well-known configure script from autoconf. Every customizable option is
available from the command help:

bentomaker configure -h

If the configure command is not run explicitely, it will automatically be run
by any subsequent command.

build

This simply builds the package. For pure-python packages, it does almost
nothing, except producing a `Build manifest`_. For packages with C extensions,
the C extensions are built.

install

build_egg

This command builds an egg from the package description. It currently requires
that configure and build commands have been run.

This is experimental - although I intend to produce eggs which are as backward
compatible as possible with existing tools (in particular enstaller, and
hopefully virtualenv and buildout), eggs are implementation defined, and depend
a lot on distutils idiosyncraties.

sdist

This simply produces a source tarball. Currently, only .tar.gz is supported.

convert

This converts a package built from distutils, setuptools or numpy.distutils:

bentomaker convert

If successful, it will produce a bento.info file.

This is experimental, and may not work. Also, it cannot convert every package
accurately, as it is based on inspecting setup.py’s execution. Nevertheless,
it can already convert simple, but non trivial packages such as sphinx pretty
accurately.

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

Single-file distribution

Ultimately, deployment is about making your code available to your users:
adding a dependency on bento in your package goes against it. To that goal,
bento sources include a script which build a single file distribution of
bento:

python tools/singledist.py

This creates a bentomaker (bentomaker.exe on windows) file which contains
everything needed to configure, build and install software packaged with
bento. You only need to include this file in your source tarball, and that’s
it – no need to install anything.

How does this work ?

The process is taken from the waf project, and is basically a simple python
script which contains enough code to bootstrap itself, and a long ascii-encoded
string representing the full bento code compressed in bzip2 format

Note:: as of today, most of the space is taken by windows executables. If you
don’t support windows, you can strip down the size to around 120 kb:

python tools/singledist.py --noinclude-exe

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

Transition from existing python packaging infrastructure

Even if you are convinced than bento is more appropriate for your needs than
current distutils-based tools, there is a significant hurdle to transition to a
new infrastructure for your package. First, you need to convert your package,
but you also potentially loose goodies such a putting your package on pypi, or
being installable through tools such as pip or easy_install.

Ideally, such tools would become pluggable so that they can be made aware of
new packaging formats, but in the mean-time, the practical approach of bento is
to “emulate” distutils just enough to make them work with the most useful bits
of the current python packaging infrastructure, and to provide tools to convert
existing setup.py to the bento format.

Converting distutils-based packages

The bentomaker command-line tool has a convert command which should be run at
the top of your source tree (the directory containing your top setup.py).
Because the convert command works by running the setup.py, you need to make
sure you can run the setup.py. To convert your package, just do:

bentomaker convert

If successfull, this will write a bento.info file whose content has been pulled
of the convert command analysis (it will not overwrite an existing one). It
first tries to determine whether your setup.py uses setuptools or not, and then
run it with mocked distutils objects for the actual conversion. Since the
convert command works by inserting various hooks into distutils internals, it
is inherently fragile.

It will definitely not work in the following cases:

	you use the package_dir feature: bento does not support the feature at all.

	you have your own distutils extensions (setuptools and numpy.distutils
are somehow handled, though, and other common distutils extensions may be
added as well).

It should support the following features:

	All the distutils metadata

	Some setuptools metadata (like require or console scripts)

	module, packages and extensions

	data files as specified in data_files

	source files in MANIFEST[.in]

Note:: because the convert command does not parse the setup.py, but runs it
instead, it only handles package description as defined by this one run of
setup.py. For example, bento convert cannot automatically handle the following
setup.py:

import sys
from setuptools import setup

if sys.platform == "win32":
 requires = ["sphinx", "pywin32"]
else:
 requires = ["sphinx"]

setup(name="foo", install_requires=requires)

If run on windows, the generated bento.info will be:

Name: foo

Library:
 InstallRequires:
 pywin32,
 sphinx

and:

Name: foo

Library:
 InstallRequires:
 sphinx

otherwise.

Note:: bento syntax supports simple conditional, so after conversion, you
could modify the generated file as follows:

Name: foo

Library:
 InstallRequires:
 sphinx
 if os(win32):
 InstallRequires:
 pywin32

Adding bento-based setup.py for compatibility with pip, etc...

Although nothing fundamentally prevents bento to work under installers such as
pip, pip currently does not know anything about bento. To help transition,
bento has a distutils compatibility layer. A setup.py as simple as:

import setuptools
from bento.distutils.monkey_patch import monkey_patch
monkey_patch()

from setuptools import setup

if __name__ == '__main__':
 setup()

will enable commands such as:

python setup.py install
python setup.py sdist

to work as expected, taking all the package information from bento.info file.
Note that the monkey-patching done by bento.distutils on top of setuptools is
explicit - solely importing bento.distutils will not monkey patch anything. A
simpler, setuptools-style monkey patch is also possible:

import setuptools
from bento.distutils.monkey_patch import setup

if __name__ == '__main__':
 setup()

Note:: obviously, this mode will not enable all the features offered by bento.
If it were possible, bento would not have been written in the first place.
Nevertheless, the following commands should work relatively well as long as you
don’t have hooks:

	sdist

	bdist_egg

	install

This should be enough for pip install foo or easy_install foo to work for a
bento-based package.

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

How to contribute

Although bento is still in early stages, there are several ways to contribute
to the project effectively if you are interested:

	Try the convert command on as many packages as possible, and report failures

	Report bento bugs

You may also look at the TODO list, and take a shot at the missing features. As
bento design is still in flux, please discuss any non-trivial feature on the
Mailing List: bento@librelist.com.

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

Design notes

This is not really readable at the moment, mostly some personal notes about
current internal design.

Bento is currently split into two parts: a core API to parse the
package description into a simple object API, and a commands library
which gives a command line interface to bento.

The main design philosophy of bento is to clearly separate the
different stages of packaging deployment, as we believe it is the only
way to make a build tool extensible.

Commands “protocol”

The command line interface of bento currently supports 3 stages:

	configuration: is concerned with configuring user options
(build/install customization).

	build: compile C extensions

	install: deploy the software into the system as configured
at the first stage. Installers are considered installation
as well for reasons explained later.

Although those stages are very similar to distutils/setuptools
mechanism, the implementation is fundamentally different, because each
stage is mostly independent from each other. No python object is
directly shared between commands - the current bentomaker
implementation implements each stage as a separate run. Once
configured, every command has access to all options.

Build manifest and building installers

Bento uses a slightly unusal process to install the bits of your package.
Instead of copying directly the files to the desired location, the install
process is driven by a build manifest. This build manifest is produced by the
build command. It contains a description of files per category as well as a few
metadata. The syntax is based of JSON so that it can easily be parsed from any
language and in most environments (local machine, browser, etc...).

Format internals

(This is likely to change in the future)

The json file contains 4 elements:

	meta: this contains the metadata (as defined in the relevant
packaging PEP)

	install_paths: a dict of the configured paths

	file_sections: a list of so-called file sections

	executables: a list of executable sections

File sections

A list of dictionaries. Each dictionary contains:

	category: the category name

	name: name of this section

	files: a list of tuple source -> target

	source_dir: os.path.join(source_dir, source) gives an absolute path
for each source file

	target_dir: os.path.join(target_dir, target) gives an absolute path
for each target file

Note that both source_dir and target_dir can refer to path variables as defined
in the install_paths section. This allows to “retarget” a build tree to
different tree configurations, as required by different packages formats.

Example:

"category": "executables",
 "files": [
 [
 "bentomaker-2.7",
 "bentomaker"
]
],
 "name": "bentomaker",
 "source_dir": "$_srcrootdir/scripts-2.7",
 "target_dir": "$bindir"

This is interpreted as installing the file
$_srcrootdir/scripts-2.7/bentomaker-2.7 into $bindir/bentomaker.

Advantages

The built bits and the build manifest are enough to install the
software to arbitrary location, so that the install process does not
need to know anything about the build process. Conversely, as long as
you can produce a build manifest, you can use the installation
commands as is.

Besides installation, the manifest is also used to produce installers.
Currently, windows installers (both .exe and .msi), eggs and mpkg are
supported, and adding new types of installers should be easier than with
distutils. If you look at the build_wininst and build_egg commands source code,
they are simple, and most of the “magic” happens in the build manifest. In
particular, the build manifest still refers to installed bits relatively to
abstract paths, and those paths are resolved when building the installers.

Installers conversion

The build manifest is intended to be included in each produced
installer, for convertion between various formats. The goal is to have
idempotent conversions (e.g. converting an egg to wininst and then
converting it back to an egg produces the exact same egg).

We also intend to use build manifest for the upcoming ‘’nest’’
service, which will contain a database of installed software.

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

FAQ

Why to create a new tool ?

Because scientific code depends so much on compiled languages (C and Fortran),
the scipy community had to significantly extend distutils. It was found to be
more and more difficult to maintain, and the source of numerous user
complaints. In the last decade, several attemps of refactoring distutils and
our extensions have been made, but none succeeded.

Bento is born out of this experience. We also believe that current solutions
based on distutils suffer a lot of NIH, and ignore lessons learned in packaging
in most other systems. Bento aims at shamelessly copying what works in other
systems (CPAN, CRAN, JSAN, HackageDB).

It should be noted that while bento currently first focus on improving the
situation for scipy community, it is in now way specific to it. Some features
like flexible installation scheme, simple data files handling are potentially
useful for anyone.

What are the goals of bento ?

The main goal of bento is to separate the concerns on building, packaging and
package description, so that it can be easily reused within custom build
frameworks (make, waf, scons, etc...). A simple build system is also provided
so that simple packages do not need to deal with anything besides bento.

Bento aims at being part of a grander vision for Scientific computing, to make
something like CPAN or CRAN available to python users. By being simpler, more
explicit, it is hoped that bento will make the development of a
scientific-specific Pypi easier.

Why not extending existing tools (distutils, etc...) ?

There is a general consensus at least in the scientific python community that
distutils is deeply flawed:

	The design by commands does not make much sense. In distutils, each
command has its own set of options, and getting the options from other
commands is difficult, if not impossible. For example, the install paths
are only known once the install command finalize_options has been run,
but knowing the install prefix at build time is often useful.

	There is no developer documentation, and what consitutes public API is
not documented either. Consequently, every non trivial distutils
extension relies on internal details, and as such is fragile.

	Extending by inheritence does not work well: when two modules A and B
extend distutils, it becomes difficult for B to reuse A (for example,
dealing with setuptools in numpy.distutils extensions has been a constant
source of bugs).

	Customizing compilation flags, and more generally some tools involved in
compilation is too complicated. For example, adding a new tool in the
build chain requires rewriting the build command, which is aggravated by
the previous issue. We believe fixing this would end up in rewriting the
whole thing.

	Improving distutils to handle dependencies automatically (rebuild only
the necessary .c files) is difficult because of the way distutils is
designed (build split across different commands, which may be
re-executed).

	The codebase quality is horrible. Subclasses don’t share the same
interface, numerous attributes are conditionally added on the fly
depending on options, etc...

Overall, there is little to save in the current codebase. At least all of the
command and ccompiler code must go away, and that’s already 2/3 of distutils
code. Given the relatively small size of distutils code, the only asset is its
“API”, but fixing what’s wrong with distutils precisely means breaking the API.
As such, a new tool written from scratch, but taking inspiration of existing
tools elsewhere is much more likely to be an actual improvement.

One should note that numpy’s extensions to distutils are pretty big:
numpy.distutils itself is as big as distutils in term of code size, and is the
biggest user of distutils API as far as I know. Hence, we are well aware of
the cost of a total break from distutils.

What about distutils2 ?

We believe that most efforts in distutils2 are peripherical to our core issues
as described above, and won’t improve the situation for the scipy community.

Starting from the distutils codebase is not very appealing, as most of it would
need to be scrapped (at least the whole command and compiler business needs to
be completely rewritten). Distutils2/packaging-related PEPs pushed by the
distutils2 team will be implemented on a case per case basis (some of them are
obsolete as far as bento is concerned, in the sense that they are already
implemented, if only in intent).

Moreover, as bento is designed from the ground up to be split into mostly
independent parts, it is possible to reuse its code in other projects. No
effort will be made to tie some features to bento to force people to use it.
If bento ends up being an experiment into useful new APIs integrated into
distutils2, bento would be considered successful. If our vision ends up being
wrong or unreachable, some of the code should be useful nonetheless.

Isn’t it too difficult to support building extensions on every platform ?

People often assume that distutils has a lot of platform-specific knowledge, in
particular to build C extensions. Except for a few exceptions (mostly on
non-Unix platforms), most of this knowledge actually comes from autoconf
through the sysconfig module.

Any non-superficial modification of the C compilation part of distutils will
also require reworking the platform-specific knowledge anyway.

What about existing projects using distutils ?

Bentomaker, the command line interface to bento, contains an experimental
command to convert existing setup.py to bento format.

It is also possible to write a setup.py which “fake distutils” while using
bento for its implementation. This allows a bento-based package to be
installable from easy_install or pip.

Is bento based on existing tools ?

The main inspirations for bento’s current design are taken from:

	Cabal [http://www.haskell.org/cabal], the packaging tool for Haskell: the bento file format is
mainly an adaptation of Cabal to python.

	Autoconf [http://sources.redhat.com/autobook/], for the flexible install scheme, automake’s way of declaring
extra distribution files (data files).

	RPM [http://rpm5.org/docs/api/specfile.html], for the spec file format.

	Setuptools: exe-based script generation on windows, egg format

Who are the authors of bento ?

Currently, I (David Cournapeau) am the main author of bento. I am a core
contributor to Numpy and Scipy, and have been the main maintainer of Numpy
distutils extensions for more than two years. I am also an occasional
contributor to scons (a make replacement in python), and debian packager.

	Other contributors:

	
	Stefan Van der Walt: initial implementation of the bento.info parser

	Philip J. Eby: for answering most of my questions about
setuptools/eggs design

	A lot of inspiration came from waf, a great make replacement in python:

	
	Single file distribution

	Yaku, bento’s internal build system is a dumbed-down waf clone

What are the main features of bento compared to its competitors

	Bento has the following main features:

	
	Full static metadata description for simple packages

	Arbitrary extensibility through python scripts

	Reliable build and installation: no more stalled files when installing,
out-of-date source files and dependencies automatically detected for C
extensions

	Optional recursive package description for complex packages

	Pluggable build backend: waf, distutils and custom one are currently
implemented. One could think about adding support for gyp, make, scons,
etc...

	Robust command dependencies from dependencies descriptor: no more
monkey-patching nonsense to insert a new command between two existing
subcommands

	The following features are being implemented as well:

	
	New packaging format which can be translated to any existing one if
wanted (egg, wininst, msi, etc...). The format is optimized for
installation

	Reliable uninstallation

Does bento support virtualenv ?

Depending on your definition of support, yes. If you run inside a virtualenv,
the following:

bentomaker configure
bentomaker install

will install the package inside the virtual environment (i.e. the same default
as when the setup.py uses setuptools). If you customized the prefix at
configure stage, it will of course not take into account the virtual
environment:

bentomaker configure --prefix=/usr/local
bentomaker install

Why shouldn’t I use bento ?

While I believe bento to be significantly better than other existing solutions,
bento has some significant disadvantages as well that you need to be aware of:

	Still mostly a one-man show. However, once bento reaches a satisfying
level, it will likely be used as a replacement to distutils for numpy and
scipy, and hopefully beyond

	Weak documentation: hopefully, this is getting better.

	Mediocre code quality: I focused on the general architecture and
low-coupling which are the main issues I had with distutils, but at a
lower level, a lot of code leaves to be desired (style inconsistencies,
etc...).

Is bento API stable ?

As suggested by the current version, no. As long as you only use the bento.info
file (no hook), you should be pretty safe - I don’t expect the bento.info file
to change in any significant backward-incompatible way.

However, the API to be used inside hook files leaves a lot to be desired, and
will change in backward incompatible ways before the first alpha. The good side
is that you can complain about the API and get it fixed until then.

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Bento 0.2.0-git37de23d784 documentation

TODO

Note: this is quite obsolete.

TODO:

	add 2to3 command

	think about integration with sphinx for doc

	test command support

	specify hook mechanism

	add proper egg support

	namespace packages: how to deal with them (file description and runtime
support) ?

	port stdeb to bento

	handle reliable install/uninstall

	fix messy lexer/parser code

	Not well thought out yet:

	
	supporting everything that pkg_resources does (namespace
package), except multiple-version installs.

Syntax and features of the package description file

The parser and lexer need to be seriously cleaned-up.

Missing features:

	Format-Versioning

	Options declaration besides boolean ?

	Unicode support

Install-Reinstall-Rebuild-Clean problem

Reliable install/reinstall

InstalledPkgInfo should be enough to install/uninstall things, so including it
in installers should be sufficient to get all the data, although it may not be
very efficient.

Fundamental problem: bento vs native packages. Possible solutions:

	1 create a new local site-packages specific to bento, and only use

	bento-enabled package for dependencies:

	advantages: reliable, relatively simple

	disadvantages: invasive, requires all dependencies to be
under bento (in particular numpy/scipy/matplotlib)

2 try to cope with existing, already installed packages.

	advantages: no barrier of entry, gradual migration

	disadvantages: how to do it ?

Scipi

Pypi does not work for the scientific community, so we need to replace it with
our own stack. The goal is something like CRAN:

	publish a package from sdist with a cabal-like file to scipi

	the package would be automatically checked for metadata consistency,
built (included documentation)

	if the package builds correctly, the package will be available on the
given platform(s)

	scipi would have a simple web interface ala CRAN

Technical issues:

	Simple server for published files (mirrored through rsync). Ideally,
pure http-based file serving is enough

	Simple WEB-API to get metadata + files

	Look at HackageDB in details

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Bento 0.2.0-git37de23d784 documentation

Index

 Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

devnotes.html

 Navigation

 		
 index

 		Bento 0.2.0-git37de23d784 documentation »

Build workflow

The main issue blocking bento alpha release is customization of new types of
built “entities”. The main constraints:

		we need to keep a consistent interface at install time

		we need to register some outputs before the files actually exist
(extensions, generated python code, etc...)

		the system should be flexible enough so that one can add new types of
files (ctypes shared library, etc...)

Suggested architecture:

bento.info -> PackageDescription -> NodePackageDescription -> OutputRegistry -> InstalledSectionRegistry
 ^
 Register in hook ---------|

Justification for the concepts:

		bento.info : obvious

		PackageDescription: python representation of a bento.info

		NodePackageDescription: is made available in hooks. A node representation
is much more reliable for recursive and out-of-tree support. Any node in
a NodePackageDescription must be on the fs already.

		OutputRegistry: this is an adapter to InstdalledSectionRegistry. This is
needed to provide a common interfance to InstalledSectionRegistry,
whether entities are built (extension, compiled library, etc...) or
directly taken from sources (modules, python packages, data files).
Nodes may or may not exist when defined there

		InstalledSectionRegistry: at that point, any “entity” is simply a list of
files + just enough metadata for install. Nodes must exists on the fs.

Current handling:

		
		build context initialization:

		
		
		PackageDescription -> NodePackageDescription instance (used in pre/post/override hooks)

		
		Initialize Output Registry (per category + optionally name)

		Initialize Builder Registry (per category + optionally name)

		Initialize Installed Section Registry (per category + optionally name)

		execite pre_build hooks

		
		execute build command run:

		
		
		register data, packages and modules into OutputRegistry

		
		
		run self.compile (overridable by context subclasses)

		
		build executables, and register to OutputRegistry

		build extensions and compiled libraries, and register
to OutputRegistry

		build additional stuff

		
		execute build command post_compiled

		
		Convert OutputRegistry objects into InstalledSectionRegistry

		post_build hooks

		context.shutdown

		pre_install hooks

		
		install run:

		
		load ipkg.info

		install each installed section with same installer

		post_install hooks

 © Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

reference/mpkg.html

 Navigation

 		
 index

 		Bento 0.2.0-git37de23d784 documentation »

 This is a few notes from reverse-engineering the pkg and mpkg format from Apple.

Pkg format

This is a directory. For a simple set of files, this looks as follows:

Contents/
 Archive.bom
 Archive.pax.gz
 Info.plist
 PkgInfo
 Resources/
 en.lproj/
 Description.plist
 package_version

Description of those files:

		Archive.bom: bill-of-materials, made through the binary mkbom:

mkbom source_directory Archive.bom

		Archive.pax.gz: pax archive of the files, made with pax + cpio:

pax -w -f dest -x cpio -z .

		Info.plist: XML file, supported through plistlib (part of python stdlib since ?)

		PkgInfo: text file with fixed content:

pmkrpkg1

 © Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

index.html

 Navigation

 		
 index

 		Bento 0.2.0-git37de23d784 documentation »

 Welcome

 Bento is a packaging tool solution for python softwares, targeted as an
 alternative to distutils, setuptools, distribute, etc.... Bento philosophy is
 reproducibility, extensibility and simplicity (in that order).

 Bento is under constant development. The main implemented features are

 		Declarative description of your package. Metadata
 and package content are described in a simple format.

		Flexible installation scheme: you can install any file
 anywhere.

 		Layered internal architecture: core functionalities, command
 line interface are clearly separated: bento is designed as a library
 from the ground-up.

 		Hackable and extensible: bento is designed to be extensible:
 commands are not hardly coupled, and new ones can be inserted between
 existing ones without the need for monkey-patching.

 		Scale down: a core principle of bento is to make software
 easier to package, and avoid too many choices for packages with simple
 needs.

		Scale up: on the other hand, bento is designed for complex
 packages. Bento is already capable to build numpy and scipy with less
 code than distutils.

 		Distutils Compatibility Layer: bento can convert an existing
 distutils package into the bento format. Bento packages can be installed
 with tools which normally expect a setup.py (pip, easy_install, etc...).

 User Sections

 		

 Overview

 Introduction to Bento.

 Install instructions

 How to install bento.

 Tutorial

 A tutorial for Bento newcommers.

 		

 Guides

 Task oriented guides

 Reference

 Detailed description of the file format and command line interface.

 FAQ

 FAQ.

 Bento development

 		

 Features

 Current and planned features.

 Hacking

 Design rationales, source organization.

 		

 Contribute

 Taking part in bento's development.

 TODO

 Remaining tasks.

 Indices and Tables

 		

 Table of Contents

 Lists all sections and subsections.

 Search Page

 Search this documentation.

 		

 Index

 All functions, classes, terms.

 © Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		Bento 0.2.0-git37de23d784 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

version.html

 Navigation

 		
 index

 		Bento 0.2.0-git37de23d784 documentation »

Version 0.2

Released on .

Main features:

		new build_msi command to build a MSI installer.

		fix examples

		revamped parser: comments should now be consistantly handled, and
parsing is significantly faster in most cases (from 30 % to several
times faster for large description strings).

		fix upload_pypi and register_pypi commands.

Fixed issues

Internals

		InstalledPkgDescription renamed to BuildManifest. Consistent
replacement of ipkg -> build_manifest

		Test suite does not spill out unwanted output anymore

Version 0.1

Released on 12th June 2012.

Main features:

		new commands register_pypi and upload_pypi to register a package to
pypi and upload tarballs to it.

		waf backend: cython tool automatically loaded if cython files are
detected in sources

		UseBackends feature: allows to declare which build backend to use
when building C extensions in the bento.info file directly

		add sphinx command to build a package documentation if it uses
sphinx.

		add tweak_library/tweak_extension functions to build contexts to
simplify simple builder customization (e.g. include_dirs, defines,
etc...)

		add simpler API to register output nodes

		add –use-distutils-flags configure option to force using flags from
distutils (disabled by default).

		add –disable-autoconfigure build option to bypass configure for fast
partial rebuilds. This is not reliable depending on how the
environment is changed, so one should only use this during
development.

		add register_metadata API to register new metadata to be filled in
MetaTemplateFile

		Deprecate MetaTemplateFile, and use MetaTemplateFiles instead to
allow for multiple template files

Fixed issues

Internals

		Test coverage has been significantly improved

		Lots of code style fixes to make the codebase more consistent

		build backend-specific code has been moved to bento.backends

		parser code has been moved to bento.parser

		last hook-related global variables have been removed

		bentomaker itself does not use global variables anymore for either
caching or command/context/option registration

		add backend concept: a backend knows how to register itself, to avoid
having to register command, context and options contexts separately

Version 0.0.8.1

Released on .

Bugfix release

Fixed issues

		python 2.4-ism

		fix in-place build/bootstrap issues for bento itself

Version 0.0.8

Released on 26th March 2012.

While this release does not have big user-visible features, it brings lots of
internal improvements and bug fixes, especially for the convert command.

Main features:

		Path sections can now use conditionals

		More reliable convert command to migrate
distutils/setuptools/distribute/distutils2 packages to bento

		Single-file distribution can now include waf itself

		Nose is not necessary to run the test suite anymore

		Significant improvements to the distutils compatibility layer

		LibraryDir support for backward compatibility with distutils packages
relying on package_dir feature

Fixed issues

		Running bento for python 2.x after having run it for 3.x does not crash
bento anymore

		Using bento installed as root should now work (#46). This is still not
recommended, though

Internals

		move most global state from bento into bentomakerlib

		add basic end-to-end tests for bento.distutils

		bento.distutils simplified: it is going toward a “shell” around bento
with compatibility with pip/easy_install/virtualenv and away from a
distutils extension

		six is now used to handle most 2/3 compatibilities.

		convert-related code is now in its won package, and has some decent
functional tests for basic features.

Version 0.0.7

Released on 25th October 2011.

Main features:

		
		New bento.info fields:

		
		‘DescriptionFromFile’: pointer to a file to read description from.

		‘Keywords’ metadata field

		‘MetaTemplateFile’: pointer to template files to be filled with bento
metadata

		Support for DESTDIR-like feature to ease downstream packaging

		Comment support in bento.info

		Sdist now has a format option, and supports zip archive as well

		Builders in waf context now support arbitrary customization

		python 2 and 3 are supported from the same codebase to avoid
bootstrapping issues.

Fixes:

		fix handling of customized flags when getting cached package information

		fix classifier handling

Version 0.0.6

Released on 13th July 2011.

Main features:

		Preliminary support for .mpkg (Mac OS X native packaging)

		More consistent API for extension/compiled library build registration

		Build directory is now customizable through bentomaker with
–build-directory option

		Out of tree builds support (i.e. running bento in a directory which does
not contain bento.info), with global –bento-info option

		Completely revamped distutils compatibility layer: it is now a thin layer
around bento infrastructure, so that most bento packages should be
pip-installable, while still keeping bento customization capabilities.

		Hook File can now be specified in recursed bento.info

Internals

		Significantly better code coverage of bento commands.

		Use node-based representation of package description in build and install

		Cleanly separated source, cwd and build directories

		Rewrote distutils compatibility layer to use command contexts.
Concretely, this means it works much closer to how bentomaker does, so
there should be less surprises between bentomaker and distutils
execution.

Version 0.0.5

Released on 8th March 2011. This is mostly a stabilization of features
implemented so far, with some code refactoring to enable easier customization
of the build process. Main features:

		All python versions from 2.4 up to 3.1 now pass the test suite (3.2 will
follow once the distribute issue with 3.2 is fixed)

		If run under a virtual environment (virtualenv), bento will install the
package inside the virtualenvironment by default

		When a command depends on other commands, those are now automatically
run, e.g.:

bentomaker build_egg # automatically run configure and build

		Update to last yaku, which contains a lot of improvements (too many to
list here)

		Add –list-files option to install command to list files to be installed

		Add –transaction option to install to produce a “transaction log”. The
transaction log will enable rollback (a first step towards reliable
uninstall).

		Internal changes to enable easier change of build tool (a waf-based
example for simple extensions is available for waf 1.6.x)

		Added experimental distutils compatibility layer so that one can write a
setup.py which will pick up all information from bento.info. This enables
projects using bento to still be able to use tools such as pip.

Internals

		Commands are now registered to a single global command registry

		Commands are now run with a command-specific context, which can be
extended for further customization (e.g. waf support in the build stage).

		Command dependency is now handled dynamically: order is set outside
command class definition, and order resolution is done at runtime with a
simple topological sort on the dependency order.

Version 0.0.4

Released on 9th October 2010. Main features:

		Add ConfigPy option to produce a simple config_py module. At the
moment, this module may be used to access installed data at
runtime without __file__ hack.

		Add ‘not flag(flag_name)’ and ‘not true|false’ to the bento.info
grammar

		Add –with-bundling option to disable bundling of
ply/yaku/simplejson to ease packaging for OS vendors

		Recursive bento and hook files for complicated, nested packages
(scipy, twisted)

		Numerous features to build numpy and scipy - experimental bento-based
build branches for both are available on http://github.com/cournape
(_bento_build branches)

Version 0.0.3

Released on 2th July 2010. Main features:

		Add hooks to customize arbitrary stages in bento

		Parallel and reliable build of C extensions through yaku build
library.

		One file distribution: no need for your users to install any new
packages, just include one single file into your package to
build with bento

		Improved documentation

		2.4 -> 2.7 support

Toydist renamed to bento

Bento means lunchbox in Japanese. Bento are often well packaged, and
this software aims at doing the same for your python package.

Hook mechanism

It is now possible to override some bento commands with a hook file
which is just a python script. Although not well documented yet, it
should enable complex customization, like interfacing with a build
system (waf, scons, make), dynamically modify the package content,
etc... the examples/hooks directory contains a few simple examples.

Yaku, build mini-framework

In version 0.0.2, bento still depended on distutils internally to
build extensions. Bento now uses yaku, a mini build framework. Yaku
main features are:

		File content-based tracking: if a file content is changed, it is
automatically rebuild

		Environment changes detection: if the compilation options
change, the files are automatically rebuilt

		Multiple jobs execution (experimental)

		Easily customizable

It should noted that bento was conceived to be agnostic to the
build system, and will remain so. In particular, projects with complex
build issues are advised to use make, scons or waf. Future versions of
bento will contain helpers for some of those tools.

One file distribution

Bento now includes a one file distribution of itself, so that you only
need to include that one file in your project to use bento. The file
weights ~350 kb, and can be reduced to ~80 kb if you don’t need to
include windows binary installer support.

Improved command line interface

Internal changes:

		Lots of internal cleaning

		Replace hackish custom format by json for build manifest

		Heavily refactor installed package description API

		All the installers (install, egg and wininst buidlers) now share
most of their implementation

Version 0.0.2

Released on the 22th April 2010:

		Ply-based parser with (relatively) sane grammar

		Windows installers and eggs building support

Version 0.0.1

Unreleased, presented at Scipy India in December 2009.

 © Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

features.html

 Navigation

 		
 index

 		Bento 0.2.0-git37de23d784 documentation »

Features

Main features currently implemented

		Package are described in a declarative file (inspired from Cabal [http://www.haskell.org/cabal] and
RPM [http://rpm5.org/docs/api/specfile.html] .spec files), so you can easily introspect basic features of packages
without running any python code (besides bento).

		A command line interface to configure, build, install projects.

		Easy integration with native filesystem conventions: every install directory
is customizable at the configure stage (autoconf-inspired).

		Building eggs without depending on setuptools.

		Simple C-extension building framework, with content-based automatic
dependency tracking, and parallel build support.

		Recursive package description support

		Hooks for customizing arbitrary stages (configure, build, etc...)

		Easy to implement new commands

		Windows installer support and basic egg support.

		Scons/waf libraries to interact with Scons [http://www.scons.org] and Waf [http://code.google.com/p/waf] build tools, so
that complex packages can have access to a real build system with
dependencies handling.

Future features

		Conversion to native packages (.deb, .rpm, .msi, etc...)

 © Copyright 2009-2011, David Cournapeau.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

